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Abstract 

 

Introduction: The aim of the study was to evaluate dynamic indices of fluid responsiveness 

in a model of intra-abdominal hypertension. 

 

Methods: Nine mechanically-ventilated pigs underwent an increased intra-abdominal 

pressure (IAP) by abdominal banding up to 30 mmHg and then a fluid loading (FL) at this 

IAP. The same protocol was carried out in the same animals made hypovolemic by blood 

withdrawal. In both volemic conditions, dynamic indices of preload dependence were 

measured at baseline IAP, at 30 mmHg of IAP, and after FL. Dynamic indices involved 

respiratory variations in stroke volume (SVV), pulse pressure (PPV), and systolic pressure 

(SPV, %SPV and ∆down). Stroke volume (SV) was measured using an ultrasound transit-

time flow probe placed around the aortic root. Pigs were considered to be fluid responders if 

their SV increased by 15% or more with FL. Indices of fluid responsiveness were compared 

with a Mann-Whitney U test. Then, receiver operating characteristic (ROC) curves were 

generated for these parameters, allowing determination of the cut-off values by using 

Youden’s method. 

 

Results: Five animals before blood withdrawal and all animals after blood withdrawal were 

fluid responders. Before FL, SVV (78 ± 19% vs 42 ± 17%), PPV (64 ± 18% vs 37 ± 15%), 

SPV (24 ± 5 mmHg vs 18 ± 3 mmHg), %SPV (24 ± 4% vs 17 ± 3%) and ∆down (13 ± 5 

mmHg vs 6 ± 4 mmHg) were higher in responders than in non responders (P<0.05). Areas 

under ROC curves were 0.93 (95% confidence interval: 0.80 to 1.06), 0.89 (0.70 to 1.07), 

0.90 (0.74 to 1.05), 0.92 (0.78 to 1.06), and 0.86 (0.67 to 1.06), respectively. Threshold values 

discriminating responders and non responders were 67% for SVV and 41% for PPV. 

 

Conclusions: In intra-abdominal hypertension, respiratory variations in stroke volume and 

arterial pressure remain indicative of fluid responsiveness, even if threshold values identifying 

responders and non responders might be higher than during normal intra-abdominal pressure. 

Further studies are required in humans to determine these thresholds in intra-abdominal 

hypertension. 
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Introduction 

 

Intra-abdominal pressure (IAP) is frequently increased in critically ill patients [1], and a 

sustained intra-abdominal hypertension (IAH) has been claimed to induce multiple organ 

failure and death [2]. In critically ill patients with acute circulatory failure due to IAH or other 

causes, fluid resuscitation could be indicated in order to increase cardiac output. However, 

any unnecessary volume loading has been shown to worsen the abdominal compartment 

syndrome (ACS) [3]. Therefore, dynamic indices of fluid responsiveness could be of value in 

this setting. Indeed, dynamic indices of fluid responsiveness relying on respiratory variations 

in arterial pressure or stroke volume have been developed in hypovolemic or septic settings 

[4-10]. Pulse pressure variation (PPV) and stroke volume variation (SVV) have been proved 

to be more reliable than static indices of preload such as right atrial pressure (RAP) or 

pulmonary capillary wedge pressure (PCWP). However, the predictive value of these 

dynamic indices in patients with IAH is unclear, as IAH affects respiratory variation in 

arterial pressure or stroke volume [11]. Recently, in an animal study, PPV proved to be 

predictive of fluid responsiveness during IAH whereas surprisingly, SVV was not [12]. In this 

study, the value of SVV was derived from pulse contour analysis, and could be therefore 

questionable. The purpose of our study was to evaluate the effects of IAH on indices of fluid 

responsiveness using aortic ultrasonic flow probe to measure SVV. We studied mechanically 

ventilated healthy pigs submitted to increased IAP and fluid loading (FL) before and after 

blood withdrawal. 

 

 

 

Materials and methods 

 

Animals and anesthesia 

The experiment was conducted in nine pigs (weight 25-30 kg) according to the guidelines of 

the animal care committee of Claude Bernard University (Lyon, France). Animals were 

premedicated with ketamine (15 mg.kg
-1

) and were anesthetized with an injection of propofol 

(1 mg. kg
-1

) followed by continuous infusion of propofol (100 µg.kg
-1

.min
-1

) and sufentanil (1 

µg.kg
-1

.h
-1

). After tracheal intubation, pigs were mechanically ventilated (Servo ventilator 900 

C-Siemens-Elema AB, Solna, Sweden) in a volume-controlled mode with a FiO2 of 0.4, a 

respiratory rate of 18 min
-1

, an inspiratory:expiratory ratio of 1:2, an end-expiratory pressure 
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of 0 cmH20 and a tidal volume set in order to maintain the end-expiratory partial pressure of 

CO2 within the normal range. This tidal volume was kept constant during the experiment (13 

± 1 ml/kg). 

 

A fluid-filled catheter was inserted into a carotid artery to monitor arterial pressure. Another 

catheter was placed in an internal jugular vein for fluids and drugs administration, and for 

measurement of RAP. A pulmonary artery catheter was inserted through the controlateral 

internal jugular vein into the pulmonary artery to measure pulmonary arterial pressure and 

PCWP. An 8-cm air-filled latex cylindral balloon (Marquette, Boissy St Léger, France) was 

positioned in the peritoneal cavity via a stab wound to measure abdominal pressure. After 

medial sternotomy and longitudinal pericardiotomy, an ultrasound transit-time flow probe 

was placed around the aortic root (14 mm A series; Transonic System, Ithaca, NY, USA). The 

pericardium was then partially closed and suspended in a pericardial cradle. Thoracic drains 

were inserted in the pleural space. Pleural pressure (Ppl) was recorded with another air-filled 

balloon placed in the mediastinal pleural space before closing the chest (Marquette, Boissy St 

Léger, France). A catheter measuring airway pressure (Paw) was put at the junction of the 

tracheal tube. Respiratory flow was measured with a pneumotachograph. All the pressure and 

flow signals were recorded with a multi-channel recording system (MP 100; Biopac System, 

Santa Barbara, CA, USA). Finally, the abdomen was banded with a Velcro belt maintained by 

three inextensible belts. A large inflatable balloon was placed between these belts to increase 

IAP in a progressive manner. 

 

 

Experimental protocol 

After the surgical preparation, a 15 min stabilization period was observed (Figure 1). Under 

steady-state anesthesia and normal IAP, circulatory and respiratory variables were recorded. 

Then, IAP was increased to 30 mmHg and maintained at this level, and data were recorded at 

this level of IAP. In order to perform FL, 500 ml of Ringer solution were infused in 10 min 

while IAP was kept at 30 mmHg. New data were collected just before and at the end of FL. 

The balloon was then deflated to decrease the IAP to its baseline level. Hypovolemia was 

created by blood withdrawal to a mean arterial pressure (MAP) of 60 mmHg. After a 15 min 

stabilization, the same protocol and measurements were carried out at normal IAP and at IAP 

of 30 mmHg before another FL. So, before and after blood withdrawal, data were recorded 

under 2 IAP levels (0, 30 mmHg), and at IAP of 30 mmHg, before and after FL. 
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Measurements and calculations 

Heart rate (HR), MAP, mean RAP (RAPm), cardiac output, stroke volume (SV), mean Ppl, 

and mean IAP were analyzed over 5 consecutive respiratory cycles. Maximal inspiratory and 

minimal expiratory Ppl were averaged from 3 consecutive breaths, as well as peak airway 

pressure (Peak Paw), inspiratory plateau pressure (Pplat), maximal inspiratory IAP, PCWP, 

respiratory variations in arterial systolic pressure (SPV), PPV and SVV. Transmural RAPm 

(RAPm-tm), transmural PCWP (PCWP-tm), pulmonary vascular resistance (PVR) and 

systemic vascular resistance (SVR) were calculated with the usual formula. The static 

compliance of the respiratory system (Crs) was calculated as the ratio of tidal volume to Pplat 

assuming that total positive end-expiratory pressure was equal to zero. The end-inspiratory 

transpulmonary pressure (Ptrans) was calculated as follows: Ptrans = Pplat - Ppl. The 

abdomino-thoracic pressure transmission index (ATI) was obtained using maximal inspiratory 

values of Ppl and IAP: ATI = (Ppl at IAP 30 - Ppl at IAP 0)/ (IAP at IAP 30 - IAP at IAP 0). 

The inspiratory-induced Ppl increase (∆Ppl) was calculated as the difference between 

maximal inspiratory Ppl and minimal expiratory Ppl. SPV were split into its 2 components, 

∆up and ∆down, after comparison with systolic pressure recording during apnea. SPV was 

also expressed relatively to systolic pressure (SP) maximal value according to the following 

formula [8]: %SPV = (SPV/maximal SP) × 100. PPV and SVV were calculated as previously 

described [4, 6]. 

 

 

Statistical analysis 

All values are shown as mean ± SD. Analysis of variance for repeated measures with 

Newman-Keuls post-hoc test was used to characterize the effects of IAP and volemia on the 

circulatory, respiratory and intra-abdominal parameters. We considered pigs to be fluid 

responders if their SV increased by 15% or more with FL. Indices of fluid responsiveness 

were compared with a Mann-Whitney U test. Then, receiver operating characteristic (ROC) 

curves were generated for these parameters. Identification of cut-off values was performed 

using the Youden’s method. Finally, changes in SV with FL were compared to these indices 

by a simple linear regression analysis. Significance was considered for p< 0.05. 
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Results 

 

Before blood withdrawal, when IAP was raised to 30 mmHg, a significant decrease in SV was 

observed (Table 1). Non transmural RAPm and RAPm-tm increased significantly, from 9.7 ± 

3.5 to 17.6 ± 5.8 mmHg and from 7.8 ± 3.7 to 11.0 ± 5.6 mmHg, respectively (p<0.05). A 

significant increase in PVR was also noticed. Non transmural PCWP and PCWP-tm did not 

change significantly. Then, FL increased transmural filling pressures and SV globally. After 

return to baseline IAP, blood withdrawal induced a decrease in transmural filling pressures, 

SV and MAP, whereas HR increased, as expected. Then, after IAP was raised to 30 mmHg, 

SV did not change significantly, whereas MAP and SVR increased significantly. Two pigs 

had sustained arrhythmia during IAH and FL after blood withdrawal. Accordingly, complete 

data were available on 7 pigs for this last part of the protocol. FL increased SV in all animals. 

 

The increase in IAP induced significant changes in respiratory variables (Table 1). Peak Paw, 

Ptrans, and ∆Ppl increased, whereas Crs decreased. ATI which quantifies the amount of 

abdominal pressure transmitted to the thoracic compartment was 47 ± 29% before blood 

withdrawal. 

 

SVV and PPV increased with both IAH and blood withdrawal (Table 2 and Figure 2). They 

were strongly correlated (R
2
 = 0.87, p<0.0001, Figure 3). SPV also increased with both IAH 

and blood withdrawal. Alterations in SPV with IAP were mainly due to ∆up increase. SPV 

and ∆up were correlated with ∆Ppl (R
2
 = 0.42 and 0.47 respectively, p<0.0001), whereas no 

correlation was found between ∆down and ∆Ppl (R
2
 = 0.01, p>0.10). Similarly, correlation 

between ∆Ppl and PPV or SVV were weak (R
2
 = 0.19 and 0.28 respectively, p<0.005). 

 

Before blood withdrawal, FL did not change significantly SVV, PPV, SPV, %SPV, and 

∆down (Table 2 and Figure 2). On the contrary, after blood withdrawal, SVV, PPV, SPV, 

%SPV, and ∆down decreased significantly with FL. In fact, before blood withdrawal, 4 pigs 

out of 9 were non fluid responders, whereas after blood withdrawal, all animals were fluid 

responders. Before FL, non responders had lower SVV, PPV, SPV, %SPV, and ∆down at IAP 

of 30 mmHg than responders (Table 3). ROC curves data showed that areas for all these 

parameters were between 0.86 and 0.93 (Table 4). Threshold values discriminating non 

responders and responders were quite high for SVV and PPV (67% and 41% respectively). 



 7

Indeed, before blood withdrawal, SVV and PPV tended to be higher during IAH than during 

baseline IAP even in the non responders: SVV increased from 21 ± 10% at baseline IAP to 42 

± 17% at IAP of 30 mmHg (p = 0.06), whereas PPV increased from 22 ± 9% to 37 ± 15% (p 

= 0.09). Changes in SV with FL were strongly correlated with pre-loading SVV and PPV 

values (R
2
 = 0.61 and 0.62 respectively, p<0.0005, Figure 4). They were less correlated with 

pre-loading %SPV, SPV values (R
2
 = 0.43 and 0.26 respectively, p<0.05), whereas no 

correlation was found with ∆down (R
2
 = 0.23, p = 0.07). 

 

 

 

Discussion 

 

In mechanically ventilated healthy pigs with IAH, the present study shows that SVV and PPV 

are still accurate indices of fluid responsiveness. However, threshold value discriminating 

responders and non responders could be modified by IAH.  

 

Fluid therapy is a major issue in critical care [13-16]. In mechanically ventilated patients, it 

relies more and more on dynamic indices of preload dependence, based on interactions 

between respiratory and circulatory functions [4-10, 17-19]. However, the straightforward 

interpretation of these indices has been reassessed [20, 21]. In a previous study, our group 

showed that in mechanically ventilated pigs, IAH affected respiratory variations in SV and 

arterial pressure [11, 22]. As no FL was done, the fluid responsiveness predictive value of 

these indices remained questionable. 

 

In the present study, circulatory changes induced by marked IAH before loading were similar 

to those described previously [23]. Indeed, SV decreased with IAH and hypovolemia. Before 

blood withdrawal, RAPm-tm, PVR, and Ptrans increased significantly with IAH, suggesting 

right ventricular afterload increase [24]. After blood withdrawal, MAP and SVR increased 

significantly with IAH, whereas SV decreased slightly, suggesting left ventricular afterload 

increase. When FL was performed, filling pressures and SV increased as a mean before or 

after blood withdrawal. However, before blood withdrawal, animals split into responders and 

non responders, suggesting that relative hypovolemia was present during IAH in some 

animals. As expected, after blood withdrawal, all animals were fluid responders. In both 

cases, respiratory variations in SV and arterial pressure were more pronounced with IAH. 
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However, they were still predictive of fluid responsiveness. SVV, PPV, SPV, %SPV and 

∆down were significantly higher in responders. Among these indices, pre-loading SVV and 

PPV had the strongest correlation with changes in SV with loading. PPV could be more 

closely related to changes in SV than SPV because of its lesser dependence on IAH-induced 

Ppl swing. Indeed, PPV mostly reflected SVV. In this study, a PPV value of 41% separated 

responders and non responders, suggesting that PPV threshold value identifying responders 

and non responders could be higher in case of IAH. Recently, another animal study 

addressing the very same question but with another methodology was published [12, 25]. In 

this study, an IAP around 25 mmHg also increased the threshold value for PPV from 11.5% to 

20.5%. In humans, Mahjoub et al. [26, 27] also noticed that among 41 mechanically 

ventilated patients with IAH and a PPV>12%, 10 (24.4%) were not fluid responders, 

suggesting that usual threshold value to predict fluid responsiveness could be altered by IAH. 

So, it seems that a high PPV value in IAH patients does to not necessarily predict a positive 

fluid response. In our study, before blood withdrawal, PPV values at baseline IAP (23 ± 9%) 

were much higher than in humans, so that straight extrapolation of our threshold value of 41% 

to clinical practice could be hazardous. Nevertheless, even among non responders, an increase 

in PPV and SVV was observed after increasing IAP. So, IAP could interfere with PPV and 

SVV independently of relative hypovolemia. Indeed, our results suggests an IAH-induced 

increase in right ventricular afterload, as already shown previously [28, 29]. It could have 

resulted in an increase in respiratory variations in right ventricular SV, a situation where the 

predictive value of PPV to detect preload dependence has been questioned already [30, 31]. 

Thus, the high PPV values observed during IAH could result from the addition of 

hypovolemia (which results in “preload dependence”) and IAH-induced right ventricular 

afterload increase (which is “preload independent”). 

 

Conversely to the results of Renner et al. [12], we found that SVV is also predictive of fluid 

responsiveness in IAH. Renner et al. acquired SVV with the PiCCO system. This latter 

derives SV from pulse contour analysis of arterial femoral pressure, a derivation which could 

be biased in case of IAH and vascular constraint [12]. Indeed, an experimental study 

performed by the same group [32] supported this hypothesis as it showed that IAH affected 

the continuous cardiac output (and SV) measurement based on pulse contour analysis with the 

PiCCO system. The evoked explanation was the change in arterial impedance induced by 

IAH. In the present study, SVV was measured using an ultrasound transit-time flow probe 

placed around the aortic root. This measurement is probably less influenced by IAH. The 
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strong correlation we found between PPV and SVV further reinforced the reliability of this 

SV measurement. Considering clinical practice where such a flow probe cannot be used, 

Doppler echocardiography could be useful during IAH. Indeed, SV can be assessed by 

recording flow in left ventricular outflow tract and measuring velocity time integral (VTI). 

Furthermore, respiratory variation in VTI (or peak velocity as a surrogate) has already been 

shown to be predictive of fluid responsiveness at normal IAP [18, 19]. As measuring SVV by 

Doppler echocardiography should be less biased by high IAP than pulse contour analysis of 

femoral pressure, respiratory variation in VTI (or peak velocity) could be predictive of 

preload dependence during IAH. Likewise, SVV from pulse contour analysis of radial 

pressure could be more reliable than pulse contour analysis of femoral pressure, as arterial 

radial impedance should be not affected by IAP. 

 

This experimental study suffers some limitations. First, as already mentioned, baseline PPV 

and SVV at IAP 0 were higher than in humans or in our previous experimental study [11]. 

High tidal volume could partly explain these findings. Furthermore, FL was performed at a 

high IAP level. Consequently, threshold values discriminating responders and non responders 

cannot be directly extrapolated to clinical practice. As threshold values may be gradually 

increased by IAP, further studies are required in humans to determine specific thresholds 

within the 4 grades of IAH as defined by the International Conference of Experts on IAH and 

ACS [2]. Second, IAH was induced by abdominal compression without increase in abdominal 

volume as usually encountered in clinical conditions. Third, IAH duration was short, so that 

long-term effects of IAH could not be evaluated. Fourth, we included a small number of 

animals. However, it was similar to animal population in numerous experimental studies [8, 

23, 29, 32]. Finally, we used healthy pigs. So, our results cannot be directly extrapolated to 

critically ill patients. 

 

 

Conclusions 

 

Our findings suggest that in presence of IAH, variations in arterial pressure or SV related to 

mechanical ventilation remain indices of fluid responsiveness. However, threshold values 

discriminating responders and non responders might be increased. PPV and SVV seem more 

accurate than SPV. As different thresholds may be obtained at different IAP, further studies 

are needed in humans to determine specific thresholds within different IAP ranges. 
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Key messages 

 

• In this experimental study, variations in arterial pressure or SV related to mechanical 

ventilation remain indices of fluid responsiveness during IAH. 

• PPV and SVV seem more accurate than SPV.  

• Threshold values discriminating responders and non responders might be higher than 

during normal IAP, so that a “supra normal” SVV or PPV does not necessarily mean fluid 

responsiveness. 

• As thresholds may vary with IAP levels, further studies are needed in humans to 

determine specific thresholds within the different grades of IAH. 
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abdominal pressure; IAPm: mean intra-abdominal pressure; MAP: mean arterial pressure; 

Paw: airway pressure; PCWP: pulmonary capillary wedge pressure; PCWP-tm: transmural 
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Table 1: Effects of alterations in IAP and volemia on circulatory and respiratory parameters 

IAP   (mmHg) 0
†
 30

†
 30 before FL

†
 30 after FL

†
 

HR   (/min)             

   Before blood withdrawal 105 ± 28 110 ± 19 121 ± 28 118 ± 23 

   After blood withdrawal 142 ± 28* 145 ± 20* 149 ± 27* 124 ± 19
♣

 

MAP   (mmHg)             

   Before blood withdrawal 75.3 ± 9.5 80.5 ± 13.7 91.6 ± 9.0 102.7 ± 16.3 

   After blood withdrawal 50.0 ± 11.5* 64.9 ± 11.1
#
* 73.6 ± 8.8* 98.3 ± 25.5

♣
 

RAPm   (mmHg)             

   Before blood withdrawal 9.7 ± 3.5 17.6 ± 5.8
#
 18.0 ± 5.9 24.3 ± 7.5

♣
 

   After blood withdrawal 7.2 ± 3.6* 13.1 ± 3.4
#
* 12.6 ± 3.3 20.6 ± 5.8

♣
 

RAPm-tm   (mmHg)             

   Before blood withdrawal 7.8 ± 3.7 11.0 ± 5.6
#
 10.9 ± 6.7 16.8 ± 7.7

♣
 

   After blood withdrawal 4.9 ± 4.3* 6.4 ± 4.3* 7.2 ± 3.5 14.8 ± 5.2
♣

 

PCWP   (mmHg)             

   Before blood withdrawal 10.0 ± 3.4 11.9 ± 3.9 11.9 ± 4.4 15.7 ± 3.5
♣

 

   After blood withdrawal 5.5 ± 2.8* 6.2 ± 2.7* 6.3 ± 2.7 12.2 ± 8.1 

PCWP-tm   (mmHg)             

   Before blood withdrawal 10.1 ± 3.6 11.7 ± 4.5 11.0 ± 4.1 15.3 ± 4.3
♣

 

   After blood withdrawal 6.4 ± 2.5* 6.3 ± 2.6* 7.2 ± 2.7 14.5 ± 8.2 

SV   (ml)             

   Before blood withdrawal 17.5 ± 4.3 14.0 ± 4.7
#
 13.7 ± 5.2 17.1 ± 4.4

♣
 

   After blood withdrawal 8.5 ± 2.9* 8.0 ± 3.2* 10.0 ± 2.5* 16.5 ± 3.3
♣

 

SVR   (dynes.s.cm
-5

)             

   Before blood withdrawal 3052 ± 872 3653 ± 1401       

   After blood withdrawal 3194 ± 1354 4440 ± 2158
#
       

PVR   (dynes.s.cm
-5

)             

   Before blood withdrawal 678 ± 230 1383 ± 962
#
       

   After blood withdrawal 1147 ± 550 2541 ± 2239       

Peak Paw   (cmH20)             

   Before blood withdrawal 27.7 ± 3.5 58.3 ± 8.0
#
       

   After blood withdrawal 29.5 ± 3.3 56.5 ± 9.3
#
       

 Ptrans   (cmH20)             

   Before blood withdrawal 17.7 ± 3.8 28.8 ± 10.6
#
       

   After blood withdrawal 18.4 ± 5.9 29.6 ± 15.0
#
       

Crs   (ml/cmH20)             

   Before blood withdrawal 19.5 ± 3.2 7,3 ± 0.9
#
       

   After blood withdrawal 20.3 ± 2.6 7.7 ± 0.9
#
       

∆∆∆∆Ppl   (mmHg)             

   Before blood withdrawal 4.4 ± 2.3 18.1 ± 10.7
#
       

   After blood withdrawal 5.9 ± 4.4 17.7 ± 11.3
#
       

IAPm   (mmHg)             

   Before blood withdrawal 3.1 ± 2.3 30.3 ± 3.7
#
       

   After blood withdrawal 3.1 ± 2.2 31.3 ± 1.7
#
       

ATI   (%)             

   Before blood withdrawal    47 ± 29       

   After blood withdrawal    43 ± 31       

Definition of abbreviations: ATI: abdomino-thoracic pressure transmission index; Crs: static 

compliance of the respiratory system; ∆Ppl = (maximal inspiratory pleural pressure – minimal 

expiratory pleural pressure); FL = fluid loading; HR = heart rate; IAPm = mean intra-abdominal 

pressure; MAP = mean arterial pressure; Paw = airway pressure; PCWP = pulmonary capillary 

wedge pressure; PCWP-tm = transmural pulmonary capillary wedge pressure; Ptrans = end-
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inspiratory transpulmonary pressure; PVR = pulmonary vascular resistance; RAPm = mean right 

atrial pressure; RAPm-tm = transmural mean right atrial pressure; SV = stroke volume; SVR = 

systemic vascular resistance. 
#
: p<0.05 vs IAP 0; * : p<0.05 vs before blood withdrawal;

 ♣
 : p<0.05 vs IAP 30 before FL. 

†
: before blood withdrawal, n = 9 at IAP 0, 30, 30 before FL, and 30 after FL; after blood 

withdrawal, n = 9 at IAP 0 and 30, n = 7 at IAP 30 before FL and 30 after FL. 

 

 

Table 2: Effects of alterations in IAP and volemia on dynamic indices of fluid responsiveness 

IAP   (mmHg) 0
†
 30

†
 30 before FL

†
 30 after FL

†
 

SVV   (%)             

   Before blood withdrawal 21 ± 13 57 ± 26
#
 60 ± 26 48 ± 20 

   After blood withdrawal 49 ± 15* 99 ± 24
#
* 81 ± 16* 45 ± 17

♣
 

PPV   (%)             

   Before blood withdrawal 23 ± 9 50 ± 23
#
 50 ± 22 42 ± 11 

   After blood withdrawal 43 ± 13* 68 ± 20
#
* 67 ± 16* 38 ± 11

♣
 

SPV   (mmHg)             

   Before blood withdrawal 7 ± 3 21 ± 5
#
 23 ± 5 22 ± 6 

   After blood withdrawal 11 ± 5* 24 ± 6
#
 26 ± 4 22 ± 6

♣
 

%SPV   (%)             

   Before blood withdrawal 8 ± 3 19 ± 5
#
 19 ± 4 17 ± 4 

   After blood withdrawal 15 ± 5* 25 ± 4
#
* 26 ± 3* 18 ± 5

♣
 

∆up   (mmHg)             

   Before blood withdrawal 2 ± 3 13 ± 4
#
 11 ± 3 13 ± 4 

   After blood withdrawal 0 ± 4 9 ± 5
#
 8 ± 6 13 ± 4 

∆down   (mmHg)             

   Before blood withdrawal 6 ± 5 8 ± 5 8 ± 5 7 ± 1 

   After blood withdrawal 12 ± 7* 16 ± 6* 16 ± 4* 9 ± 3
♣

 

Definition of abbreviations: FL = fluid loading; PPV = pulse pressure variation; SPV = systolic 

pressure variation; %SPV = (SPV/maximal systolic pressure) × 100; SVV = stroke volume 

variation. 
#
: p<0.05 vs IAP 0; * : p<0.05 vs before blood withdrawal;

 ♣
 : p<0.05 vs IAP 30 before FL. 

†
: before blood withdrawal, n = 9 at IAP 0, 30, 30 before FL, and 30 after FL; after blood 

withdrawal, n = 9 at IAP 0 and 30, n = 7 at IAP 30 before FL and 30 after FL.  

 

 

Table 3: Indices of fluid responsiveness 

 Non Responders Responders p 

SVV   (%) 42 ± 17 78 ± 19 <0.05 

PPV   (%) 37 ± 15 64 ± 18 <0.05 

SPV   (mmHg) 18 ± 3 24 ± 5 <0.05 

%SPV   (%) 17 ± 3 24 ± 4 <0.05 

∆down   (mmHg) 6 ± 4 13 ± 5 <0.05 

Definition of abbreviations: FL = fluid loading; PPV = pulse pressure variation; SPV = systolic 

pressure variation; %SPV = (SPV/maximal systolic pressure) × 100; SVV = stroke volume 

variation. 

FL was performed in 9 pigs before blood withdrawal and 7 pigs after blood withdrawal 

(see also text). 

 

 

Table 4: ROC curves data 

 Area 95% CI p Cut-off 
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SVV   (%) 0.93 0.80 – 1.06 0.01 67 

PPV   (%) 0.89 0.70 – 1.07 0.03 41 

SPV   (mmHg) 0.90 0.74 – 1.05 0.02 22 

%SPV   (%) 0.92 0.78 – 1.06 0.02 22 

∆down   (mmHg) 0.86 0.67 – 1.06 0.04 13 

Definition of abbreviations: CI: confidence interval; FL = fluid loading; PPV = pulse pressure 

variation; SPV = systolic pressure variation; %SPV = (SPV/maximal systolic pressure) × 100; SVV 

= stroke volume variation. 

.
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Figure legends 

 

Figure 1: Flow chart of the experimental protocol. 

 

Figure 2: Effects of alterations in intra-abdominal pressure (IAP) and volemia on 

stroke volume variation (SVV) and pulse pressure variation (PPV). Definition of 

abbreviation: FL = fluid loading. 
#
 : p<0.05 vs IAP 0; * : p<0.05 vs before blood 

withdrawal; 
♣

 : p<0.05 vs IAP 30 before FL for the animals after blood withdrawal. 

Before blood withdrawal, n = 9 at IAP 0, 30 before FL and 30 after FL; after blood 

withdrawal, n = 9 at IAP 0, n = 7 at IAP 30 before FL and 30 after FL. 

 

Figure 3: Relation between pulse pressure variation (PPV) and stroke volume 

variation (SVV) (data pooled from the different steps of the protocol: n = 67). 

 

Figure 4: Relation between changes in stroke volume (SV) with fluid loading (FL) 

and stroke volume variation (SVV) or pulse pressure variation (PPV) before FL at 

intra-abdominal pressure of 30 mmHg. FL was performed in 9 pigs before blood 

withdrawal and 7 pigs after blood withdrawal (see also text). 









Figure 4
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